This Course Is About... (1/2)

Data structures: how to store data.
Examples: arrays, linked lists.
This course goes way beyond them.
But why? Why other data structures?
Because you need this course to graduate. :)
To speed up some kinds of lookups and updates.

This Course Is About... (2/2)

We will learn:

▶ Several data structures.
▶ Algorithms that look up and update them.
▶ Why the algorithms are correct.
▶ How fast the algorithms are.
(Therefore what the data structures are good for.)
Sometimes also how much space.
▶ Making up our own data structures and algorithms.
(Or adapting from what we learned.)

The course cannot possibly cover all data structures!
There are a lot more you will have to learn outside this course.

Course Web Page

And Blackboard.

We now turn to stuff that will be on the exam!
Big O

"Linear search takes $O(n)$ time."

"Binary search takes $O(\log(n))$ time." (lg means \log_2)

"Bubble sort takes $O(n^2)$ time."

"$n^2 + 2n + 1 \in O(n^2)$"

"$n^2 + 2n + 1 \not\in O(n)$"

?? What are they saying?

Let me scare you a bit first...

(Assume: for all natural n, $f(n) \geq 0$, $g(n) \geq 0$.)

(In this course, 0 is a natural number.)

Definition: $f(n) \in O(g(n))$ iff

there exists real $c > 0$, natural n_0 such that

for all natural $n \geq n_0$,

$f(n) \leq c \times g(n)$

Help! What is it saying?!

Let me tell some revisionist history...

How much time does this take?

```java
int i, j, n;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; }
    }
}
```

On one computer and one compiler:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>read i, j, n</td>
<td>2</td>
</tr>
<tr>
<td>read a[i]</td>
<td>3</td>
</tr>
<tr>
<td>write i, j</td>
<td>3</td>
</tr>
<tr>
<td>arithmetic</td>
<td>1</td>
</tr>
<tr>
<td>two-way branch</td>
<td>1 if continue, 2 if exit</td>
</tr>
<tr>
<td>loop back</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: $12n^2 + 9n + 8$

How much time does this take?

```java
int i, j, n;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; }
    }
}
```

On another computer and another compiler:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>read i, j, n</td>
<td>1</td>
</tr>
<tr>
<td>read a[i]</td>
<td>5</td>
</tr>
<tr>
<td>write i, j</td>
<td>1</td>
</tr>
<tr>
<td>arithmetic</td>
<td>1</td>
</tr>
<tr>
<td>two-way branch</td>
<td>0 if continue, 2 if exit</td>
</tr>
<tr>
<td>loop back</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: $9.5n^2 + 2.5n + 4$
How much time does this take?

```java
int[] a;
int e;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; }
    }
}
```

To a theoretician:

<table>
<thead>
<tr>
<th>the j-loop</th>
<th>(D(n - i - 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>the i-loop</td>
<td>(\sum_{i=0}^{n-1} (C + \text{the j-loop}))</td>
</tr>
<tr>
<td>the whole</td>
<td>(B + \text{the i-loop})</td>
</tr>
<tr>
<td>Total</td>
<td>(\frac{D}{2}n^2 + (C + \frac{D}{2})n + B)</td>
</tr>
</tbody>
</table>

How to be both Coarse and Rigorous?

Watch this mathemagic:

\[
12n^2 + 9n + 8 \leq 12n^2 + 9n^2 + 8 = 21n^2 + 8
\]

For all natural \(n \geq 8\):

\[
21n^2 + 8 \leq 21n^2 + n \\
\leq 21n^2 + n^2 \\
= 22n^2
\]

How to be both Coarse and Rigorous?

There exists real \(c > 0\), natural \(n_0\) such that

for all natural \(n \geq n_0\), \(12n^2 + 9n + 8 \leq cn^2\)

\[
12n^2 + 9n + 8 \in O(n^2) \\
9.5n^2 + 2.5n + 4 \in O(n^2) \\
\frac{D}{2}n^2 + (C + \frac{D}{2})n + B \in O(n^2)
\]

My algorithm takes time in \(O(n^2)\)

My algorithm takes \(O(n^2)\) time

My algorithm takes time on the order of \(n^2\)

\(4n \log_2(n) + 2n + 10 \in O(n \log_2(n))\)

The definition is seary sophisticated because it has to drop some information and carefully preserve some other.
More or Less

But wait, these are also true:

▶ $n \in O(n^2)$
▶ $3 \in O(n^2)$

$O(n^2)$ includes quadratic functions as well as “lesser” functions. We need another definition to exclude “lesser” functions.

$n \in O(n^2)$ because it only requires there exists c for all $n \leq cn^2$

It’s only a one-sided inequality.

The definition in the next slide uses a two-sided inequality to rule out this.

The Rise of Big Θ

(Assume: for all natural n, $f(n) \geq 0$, $g(n) \geq 0$.)

Definition: $f(n) \in \Theta(g(n))$ iff

there exists real $b > 0$, real $c > 0$, natural n_0 such that for all natural $n \geq n_0$,

$$b \times g(n) \leq f(n) \leq c \times g(n)$$

Θ is Greek capital theta.

Example: $12n^2 + 9n + 8 \in \Theta(n^2)$ because for all $n \geq 8$, $1n^2 \leq 12n^2 + 9n + 8 \leq 22n^2$

Example: $n \notin \Theta(n^2)$ because (sketch) you can’t make $bn^2 \leq n$ to work.

Using Limits to Prove Big O

Theorem: If $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ exists and is finite, then $f(n) \in O(g(n))$.

Example: Prove $n(n + 1)/2 \in O(n^2)$

$$\lim_{n \to \infty} \frac{n(n + 1)/2}{n^2} = \frac{1}{2}$$

Therefore $n(n + 1)/2 \in O(n^2)$

Example: Prove $\ln(n) \in O(n)$

$$\lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$$

Therefore $\ln(n) \in O(n)$

Using Limits to Disprove Big O

Theorem: If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$, then $f(n) \notin O(g(n))$.

Example: Disprove $n^2 \in O(n)$

$$\lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} n = \infty$$

Therefore $n^2 \notin O(n)$

Example: Disprove $n \in O(\ln(n))$

$$\lim_{n \to \infty} \frac{n}{\ln(n)} = \lim_{n \to \infty} \frac{1}{\ln(n)} = \lim_{n \to \infty} n = \infty$$

Therefore $n \notin O(\ln(n))$
When Limits Don’t Help

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) exists and is finite, then . . .

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then . . .

Which case has not been covered?

If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) does not exist and is not \(\infty \), then no conclusion.

Hopefully you won’t run into this case.

Examples When Limits Don’t Help

Define: \(\text{drunk}(n) = \) if \(n \) is even then 1 else \(n \)

(Plot it to see what it looks like!)

Example:

\[
\lim_{n \to \infty} \frac{\text{drunk}(n)}{n}
\]

does not exist and is not \(\infty \), and still \(\text{drunk}(n) \in O(n) \).

Example:

\[
\lim_{n \to \infty} \frac{\text{drunk}(n)}{1}
\]

does not exist and is not \(\infty \), and this time \(\text{drunk}(n) \notin O(1) \)

Using Limits for \(\Theta \)

Theorem: \(f(n) \in \Theta(g(n)) \) iff

\[
f(n) \in O(g(n)) \text{ and } g(n) \in O(f(n))
\]

Handy when you want to use limits.

(Not handy when you want to prove the \(\exists \forall \) directly.)

Example: \(n^2 + n^{3/2} \in \Theta(n^2) \)

\[
n^2 + n^{3/2} \in O(n^2) \text{ by a limit}
\]

\[
n^2 \in O(n^2 + n^{3/2}) \text{ by a similar limit}
\]

Example: \(\ln(n) \notin \Theta(n) \)

You saw \(n \notin O(\ln(n)) \) by a limit.

Big \(O \), Big \(\Theta \) May Miss Something

\[
10^{100}n \in \Theta(n)
\]

\[
n + 10^{100} \in \Theta(n)
\]

Can’t say these are practical algorithm times.

But \(O, \Theta \) can’t detect them.

This is a price for ignoring machine differences.

These pathological cases are rare. \(O \) and \(\Theta \) are usually informative.
Big O, Big Θ Gain Simplification

```plaintext
e = false;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; }
    }
}
```

“$12n^2 + 9n + 8$ ns”
Took me 15 minutes to figure out.

“The inner loop takes $O(n - i - 1)$ time, which is $O(n)$.
The outer loop takes n iterations.
Altogether $O(n^2)$ time.”
This only takes 30 seconds to figure out.

It is one of the reasons we use O and Θ.

O vs Θ

My friend says: “my algorithm takes $O(n^2)$ time.”

- It may mean $9n^2 + 4n + 13$
- It may mean $3n + 2$ time.
 $3n + 2 \in O(n^2)$ is still true.
- It may take 45 time.
 $45 \in O(n^2)$ is still true.

My opinion: You should say Θ as much as you can.
Popular opinion: Just say O.

A good use of O: Assignment or contract says:
“Write a $O(n^2)$-time algorithm.”
It allows you to do better.

Worse Case, Best Case

```plaintext
e = false;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; break; }
    }
}
if (e) { break; }
```

Depending on what’s in a:
Anywhere from $\Theta(1)$ time to $\Theta(n^2)$ time.
Best case is $\Theta(1)$ time.
Worse case is $\Theta(n^2)$ time.

We look at worst cases in this course mostly.

Myth Buster

Myth: O means worst case time.
Truth: O and Θ classify functions, do not say what the functions are for.

$9n^2 + 4n + 13$ may be best case time, or worst case time, or best case space, or worst case space, or just a polynomial from nowhere.

$9n^2 + 4n + 13 \in O(n^2)$ is true regardless.

“Best case time is in $O(n^2)$” is allowed. It means:
Best case time is some function, that function is in $O(n^2)$.
Clearly a sensible statement and possible scenario.

O and Θ are good for any function from natural to non-negative real.
Binary Search Tree: Introduction

```java
public class Node<K extends Comparable<K>> {
    public K key;
    public Node<K> left, right;
}
```

Storing a Set

I want to store a set of keys.

I'm given: keys can be compared (<, =, >).

I want these operations to be fast:

- `s.find(x)`: return whether `x` is in `s`
- `s.insert(x)`: add `x` to `s`
- `s.remove(x)`: delete `x` from `s`

Storing a Set: Near Miss

(Reminder: Keys can be compared (<, =, >).)

If I wanted this only:

- `s.find(x)`: return whether `x` is in `s`

then you already know how to do it.

Store in an array in increasing order:

```
8  13  20  42  47  85  91
```

Use binary search for `find`. $O(\log_2(n))$ time.

But `insert` and `remove` are icky.

Storing a Set: Binary Search Tree

```
8  13  20  42  47  85  91
```

Good news for `s.find(x)`:
left child, right child are exactly what you would try next in binary search!
Binary Search Tree: Definition

A binary search tree:

- is a binary tree
- at each node v:
 - v.key is greater than all keys in the left sub-tree
 - v.key is smaller than all keys in the right sub-tree

Binary Search Tree: find

```java
private Node<K> root;
...

public boolean find(K x) {
    Node<K> v = root;
    while (v != null) {
        int r = v.key.compareTo(x);
        if (r == 0) {
            return true;
        } else {
            v = r > 0 ? v.left : v.right;
        }
    }
    return false;
}
```

Binary Search Tree: insert

```java
public void insert(K x) {
    if (root == null) {
        root = new Node<K>(x);
    } else {
        Node<K> v = root;
        for (; ;) {
            if (v.key.compareTo(x) == 0) {
                return;
            } else if (v.key.compareTo(x) > 0) {
                if (v.left == null) {
                    v.left = new Node<K>(x);
                    return;
                } else {
                    v = v.left;
                }
            } else {
                // similar, except it’s v.right
            }
        }
    }
}
```

Binary Search Tree: insert trouble

Start with the empty tree.
Insert 1, 2, ..., n in that order.
What do you get?

The tree is leaned on one side.
find, insert, remove are not $O(\log_2(n))$ anymore.
What to do? What to do?

Cliff hanger! Come next time for a solution!