Ranking
In a set or a dictionary:
Rank of key \(k \) is \(i \) iff \(k \) is the \(i \)th smallest key.

Example: if \(s \) stores these keys 42, 55, 61, then:
- \(s.\text{rank}(42) \) returns 1
- \(s.\text{rank}(55) \) returns 2
- \(s.\text{rank}(61) \) returns 3
- \(s.\text{rank}(k) \) throws exception if \(k \) not found

Ranks from Sizes: Introduction
Recall: each node stores size of subtree.

```java
class Node\<K\> {
    public K key;
    public Node\<K\> left, right, parent;
    public int num;
}
```

```java
static int size(Node\<?\> u) {
    return u == null ? 0 : u.num;
}
```

This will be useful for finding ranks.

Computing Ranks from Sizes, Part 1/3
(upper-right corners show sizes)

- Rank of 50 is...3 because there are 2 keys smaller than 50: those in the left subtree.

\[\Rightarrow \text{Rank is size}(v.\text{left}) + 1 \]

Except...this may be just part of a larger tree.

Computing Ranks from Sizes, Part 2/3
If \(v \) has a parent:

- Rank of 50 is 3.
- Rank of 50 is 7+1+3.

Except...\(u \) also has a parent, etc., ad infinitum. We need to loop or recurse over this.
Recursively:

```java
private static int relativeRank(K k, Node<K> u) throws NotFound {
    if (u == null) { throw new NotFound(); }
    int c = k.compareTo(u.key);
    if (c < 0) { return relativeRank(k, u.left); }
    if (c > 0) { return size(u.left) + 1 +
                 relativeRank(k, u.right); }
    return size(u.left) + 1;
}

public int rank(K k) throws NotFound {
    return relativeRank(k, root);
}
```

Iteratively:

```java
int numSmaller = 0;
Node<K> v = root;
while (v != null) {
    int c = k.compareTo(v.key);
    if (c == 0) { return numSmaller + size(v.left) + 1;
    }
    else if (c > 0) { numSmaller += size(v.left) + 1;
                     v = v.right;
    } else { // no change to numSmaller
             v = v.left;
     }
    throw new NotFound();
}
```

Either way:

Computing rank takes $\Theta(height)$ time worst case, i.e., $\Theta(log(n))$.

Next data structure.

(Just to confuse you: It's a binary tree again!)
Priority Queue (Simplified Story)

A priority queue stores a collection of priorities.

- **insert**(p): insert a priority p
- **maxKey()**: return the maximum priority
- **extractMax()**: remove and return the maximum priority

It's like:

- a hospital's emergency room
- an OS's ordering of things to do
- your ordering of things to study

(The real story: a collection of priority-job pairs.)

Heap

A heap is one way to store a priority queue. A heap is:

- a binary tree
- "nearly complete": every level \(i \) has \(2^i \) nodes, except the bottom level; the bottom nodes flush to the left
- at each node: its priority \(\geq \) both children's priorities

Heap for Priority Queue

maxKey: \(\Theta(1) \) time.
This is a win over using binary search trees.

insert, extractMax: We will see how, \(\Theta(\log(n)) \) time.

Heap insert: Example

Insert priority 15. At the bottom level, leftmost free space.

√ The tree is still "nearly-complete".

! Order of priorities bad. Fix: swap with parent.
Heap insert: Example

The tree is still “nearly-complete”.

Order of priorities bad. Fix: swap with parent.

The tree is still “nearly-complete”.

Order of priorities good.

Heap insert: Summary

1. create new node at bottom level, leftmost free place (keep the tree “nearly-complete”)
2. put priority in new node
3. \(v := \) that new node
4. while \(v \) has parent with smaller priority:
 swap them
 \(v := v.parent \)

Worst case time \(\Theta(height) \).

Later we will see why \(height = \lceil \log_2(n) \rceil + 1 \). Therefore worse case time \(\Theta(\log(n)) \).

Heap extractMax: Example

Someone has to replace the blank!
Replace by the bottom level, rightmost item.

√ The tree is still “nearly-complete”.
! Order of priorities bad. Fix: swap with the larger child. (Why not the smaller child?)

Replace by the bottom level, rightmost item.

√ The tree is still “nearly-complete”.
! Order of priorities bad. Fix: swap with the larger child. (Why not the smaller child?)

Replace by the bottom level, rightmost item.

√ The tree is still “nearly-complete”.
√ Order of priorities good.

Heap extractMax: Example

Heap extractMax: Summary

1. Replace root by bottom level, rightmost item (keep the tree “nearly-complete”.)
2. \(v \leftarrow \text{root} \)
3. while \(v \) has larger child:
 swap with the largest child
 \(v \leftarrow \text{that child node} \)

Worst case \(\Theta(\text{height}) \) time.

Next we will see why \(\text{height} = \lceil \log_2(n) \rceil + 1 \). Therefore worse case time \(\Theta(\log(n)) \).
Heap: Height

Let \(n \) be the number of nodes, \(h \) be the height.

\[
2^{h-1} - 1 \leq n \leq 2^h - 1
\]

\[
(2^{h-1} - 1) + 1 \leq n \leq 2^h - 1
\]

\[
2^{h-1} \leq n < 2^h
\]

\[
h - 1 \leq \log_2(n) < h
\]

\[
h \leq \log_2(n) + 1 < h + 1
\]

\[
h = \lfloor \log_2(n) \rfloor + 1
\]

Heap in Array/Vector

Convenience:

▶ Where to insert/remove: simply at the end.
▶ Saves space. (No pointers to store.)

Formulas for:

▶ left child of index \(i \): index \(2 \times i \)
▶ right child of index \(i \): index \(2 \times i + 1 \)
▶ parent of index \(i \): index \(\lfloor i/2 \rfloor \)

Increase A Priority

```
HeapNode heap[];
class HeapNode {
    int priority;
    Job job;
}
class Job {
    ... job data ...
    int heapPos; // index in the heap's array
}
```

Init `heapPos` when inserting a new job.
Update when swapping two jobs during insert, extractMax.
(Can you see how?)

Then we can support: `increaseKey(job, newPriority)`
Increase A Priority

increaseKey(Job j, int newPriority):

1. \(v := j.\text{heapPos} \)
2. if newPriority < heap[\(v \)].priority: error
3. heap[\(v \)].priority := newPriority
4. while \(v \) has parent with larger priority:
 swap them
 \(v := \lfloor v/2 \rfloor \)

Max vs Min

I have been storing larger priorities near the top to support maxKey, extractMax, increaseKey. ⇒ These are max priority queues and max-heaps.

But you could store smaller priorities near the top to support minKey, extractMin, decreaseKey. ⇒ These are min priority queues and min-heaps.

Example of min priority queue: A todo-list with start times.

Another application: coming soon!

Min-Heap Example