This Course Is About... (1/2)

Data structures: how to store data.

Examples: arrays, linked lists.

This course goes way beyond them.

But why? Why other data structures?

Because you need this course to graduate. :)

This Course Is About... (1/2)

Data structures: how to store data.

Examples: arrays, linked lists.

This course goes way beyond them.

But why? Why other data structures?

Because you need this course to graduate. :)

To speed up some kinds of lookups and updates.
This Course Is About... (2/2)

We will learn:

- Several data structures.
- Algorithms that look up and update them.
- Why the algorithms are correct.
- How fast the algorithms are.
 (Therefore what the data structures are good for.)
 Sometimes also how much space.
- Making up our own data structures and algorithms.
 (Or adapting from what we learned.)

The course cannot possibly cover all data structures!
There are a lot more you will have to learn outside this course.
Course Web Page

http://www.cs.utoronto.ca/~trebla/CSCB63-2014-Summer/

And Blackboard.
We now turn to stuff that will be on the exam!
“Linear search takes $O(n)$ time.”

“Binary search takes $O(\log(n))$ time.”

“Bubble sort takes $O(n^2)$ time.”

“$n^2 + 2 \cdot n + 1 \in O(n^2)$”

“$n^2 + 2 \cdot n + 1 \notin O(n)$”

?? What are they saying?
Let me scare you a bit first. . .

(Assume: for all natural n, $f(n) \geq 0$, $g(n) \geq 0$.)
Let me scare you a bit first.

(Assume: for all natural n, $f(n) \geq 0$, $g(n) \geq 0$.)

(In this course, 0 is a natural number.)
Let me scare you a bit first...

(Assume: for all natural n, \(f(n) \geq 0, g(n) \geq 0 \).

(In this course, 0 is a natural number.)

Definition: \(f(n) \in O(g(n)) \) iff

\[
\text{there exists real } c > 0, \text{ natural } n_0 \text{ such that for all natural } n \geq n_0,
\]
\[f(n) \leq c \cdot g(n)\]
Let me scare you a bit first...

(Assume: for all natural n, $f(n) \geq 0$, $g(n) \geq 0$.)

(In this course, 0 is a natural number.)

Definition: $f(n) \in O(g(n))$ iff

there exists real $c > 0$, natural n_0 such that for all natural $n \geq n_0$,

$$f(n) \leq c \cdot g(n)$$

Help! What is it saying?!
Let me scare you a bit first...

(Assume: for all natural n, $f(n) \geq 0$, $g(n) \geq 0$.)

(In this course, 0 is a natural number.)

Definition: $f(n) \in O(g(n))$ iff

there exists real $c > 0$, natural n_0 such that for all natural $n \geq n_0$,

$f(n) \leq c \cdot g(n)$

Help! What is it saying?!

Let me tell some revisionist history...
How much time does this take?

e = false;
for (i = 0; i < n; i++) {
 for (j = i+1; j < n; j++) {
 if (a[i] == a[j]) { e = true; }
 }
}

How much time does this take?

```java
e = false;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; }
    }
}
```

On one computer and one compiler:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>read i, j, n</td>
<td>2</td>
</tr>
<tr>
<td>read a[i]</td>
<td>3</td>
</tr>
<tr>
<td>write i, j</td>
<td>3</td>
</tr>
<tr>
<td>arithmetic</td>
<td>1</td>
</tr>
<tr>
<td>two-way branch</td>
<td>1 if continue, 2 if exit</td>
</tr>
<tr>
<td>loop back</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: $12 \cdot n^2 + 9 \cdot n + 8$
How much time does this take?

e = false;
for (i = 0; i < n; i++) {
 for (j = i+1; j < n; j++) {
 if (a[i] == a[j]) { e = true; }
 }
}

On another computer and another compiler:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>read i, j, n</td>
<td>1 ns</td>
</tr>
<tr>
<td>read a[i]</td>
<td>5 ns</td>
</tr>
<tr>
<td>write i, j</td>
<td>1 ns</td>
</tr>
<tr>
<td>arithmetic</td>
<td>1 ns</td>
</tr>
<tr>
<td>two-way branch</td>
<td>0 ns if continue, 2 ns if exit</td>
</tr>
<tr>
<td>loop back</td>
<td>1 ns</td>
</tr>
</tbody>
</table>

Total: $9.5 \cdot n^2 + 2.5 \cdot n + 4$
How much time does this take?

```plaintext
e = false;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; }
    }
}
```

To a theoretician:

<table>
<thead>
<tr>
<th>the j-loop</th>
<th>$D \cdot (n - i - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>the i-loop</td>
<td>$\sum_{i=0}^{n-1} (C + \text{the j-loop})$</td>
</tr>
<tr>
<td>the whole</td>
<td>$B + \text{the i-loop}$</td>
</tr>
</tbody>
</table>

Total: $\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B$
How to be both Coarse and Rigorous?

\[12 \cdot n^2 + 9 \cdot n + 8\]
\[9.5 \cdot n^2 + 2.5 \cdot n + 4\]
\[\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B\]

How to unify them and ignore machine differences?

What is common about them?
How to be both Coarse and Rigorous?

\[12 \cdot n^2 + 9 \cdot n + 8 \]
\[9.5 \cdot n^2 + 2.5 \cdot n + 4 \]
\[\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B \]

How to unify them and ignore machine differences?

What is common about them? Quadratic polynomials.
How to be both Coarse and Rigorous?

\[12 \cdot n^2 + 9 \cdot n + 8\]
\[9.5 \cdot n^2 + 2.5 \cdot n + 4\]
\[\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B\]

How to unify them and ignore machine differences?

What is common about them? Quadratic polynomials.

Poster-boy for quadratic polynomials: \(n^2 \).

How to rigorously say: the above functions are “like” \(n^2 \)?
How to be both Coarse and Rigorous?

\[12 \cdot n^2 + 9 \cdot n + 8\]
\[9.5 \cdot n^2 + 2.5 \cdot n + 4\]
\[\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B\]

How to unify them and ignore machine differences?

What is common about them? Quadratic polynomials.

Poster-boy for quadratic polynomials: \(n^2\).

How to rigorously say: the above functions are “like” \(n^2\)?

And cubic polynomials are “like” \(n^3\)?
How to be both Coarse and Rigorous?

\[12 \cdot n^2 + 9 \cdot n + 8 \]
\[9.5 \cdot n^2 + 2.5 \cdot n + 4 \]
\[\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B\]

How to unify them and ignore machine differences?

What is common about them? Quadratic polynomials.

Poster-boy for quadratic polynomials: \(n^2\).

How to rigorously say: the above functions are “like” \(n^2\)?

And cubic polynomials are “like” \(n^3\)?

And \(4 \cdot n \cdot \log_2(n) + 2 \cdot n + 10\) is “like” \(n \cdot \log_2(n)\)?

Etc., etc.
How to be both Coarse and Rigorous!

Watch this mathemagic:

\[12 \cdot n^2 + 9 \cdot n + 8 \leq 12 \cdot n^2 + 9 \cdot n^2 + 8 \]

\[= 21 \cdot n^2 + 8 \]
How to be both Coarse and Rigorous!

Watch this mathemagic:

\[
12 \cdot n^2 + 9 \cdot n + 8 \leq 12 \cdot n^2 + 9 \cdot n^2 + 8
= 21 \cdot n^2 + 8
\]

For all natural \(n \geq 8 \):

\[
21 \cdot n^2 + 8 \leq 21 \cdot n^2 + n
\leq 21 \cdot n^2 + n^2
= 22 \cdot n^2
\]
How to be both Coarse and Rigorous!

Watch this mathemagic:

$$12 \cdot n^2 + 9 \cdot n + 8 \leq 12 \cdot n^2 + 9 \cdot n^2 + 8$$
$$= 21 \cdot n^2 + 8$$

For all natural $n \geq 8$:

$$21 \cdot n^2 + 8 \leq 21 \cdot n^2 + n$$
$$\leq 21 \cdot n^2 + n^2$$
$$= 22 \cdot n^2$$

There exists natural n_0 such that

for all natural $n \geq n_0$, $12 \cdot n^2 + 9 \cdot n + 8 \leq 22 \cdot n^2$
How to be both Coarse and Rigorous!

Watch this mathemagic:

\[
12 \cdot n^2 + 9 \cdot n + 8 \leq 12 \cdot n^2 + 9 \cdot n^2 + 8 \\
= 21 \cdot n^2 + 8
\]

For all natural \(n \geq 8 \):

\[
21 \cdot n^2 + 8 \leq 21 \cdot n^2 + n \\
\leq 21 \cdot n^2 + n^2 \\
= 22 \cdot n^2
\]

There exists natural \(n_0 \) such that

for all natural \(n \geq n_0 \), \(12 \cdot n^2 + 9 \cdot n + 8 \leq 22 \cdot n^2 \)

There exists real \(c > 0 \), natural \(n_0 \) such that

for all natural \(n \geq n_0 \), \(12 \cdot n^2 + 9 \cdot n + 8 \leq c \cdot n^2 \)
The Rise of Big-Oh

There exists real $c > 0$, natural n_0 such that
for all natural $n \geq n_0$, $12 \cdot n^2 + 9 \cdot n + 8 \leq c \cdot n^2$

$12 \cdot n^2 + 9 \cdot n + 8 \in O(n^2)$
The Rise of Big-Oh

There exists real $c > 0$, natural n_0 such that for all natural $n \geq n_0$, $12 \cdot n^2 + 9 \cdot n + 8 \leq c \cdot n^2$

$12 \cdot n^2 + 9 \cdot n + 8 \in O(n^2)$
$9.5 \cdot n^2 + 2.5 \cdot n + 4 \in O(n^2)$
$\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B \in O(n^2)$
The Rise of Big-Oh

There exists real $c > 0$, natural n_0 such that
for all natural $n \geq n_0$, $12 \cdot n^2 + 9 \cdot n + 8 \leq c \cdot n^2$

$12 \cdot n^2 + 9 \cdot n + 8 \in O(n^2)$
$9.5 \cdot n^2 + 2.5 \cdot n + 4 \in O(n^2)$
$\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B \in O(n^2)$

My algorithm takes time in $O(n^2)$
My algorithm takes $O(n^2)$ time
My algorithm takes time on the order of n^2
The Rise of Big-Oh

There exists real $c > 0$, natural n_0 such that
for all natural $n \geq n_0$, $12 \cdot n^2 + 9 \cdot n + 8 \leq c \cdot n^2$

$12 \cdot n^2 + 9 \cdot n + 8 \in O(n^2)$
$9.5 \cdot n^2 + 2.5 \cdot n + 4 \in O(n^2)$
$\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B \in O(n^2)$

My algorithm takes time in $O(n^2)$
My algorithm takes $O(n^2)$ time
My algorithm takes time on the order of n^2

$4 \cdot n \cdot \log_2(n) + 2 \cdot n + 10 \in O(n \cdot \log_2(n))$
The Rise of Big-Oh

There exists real $c > 0$, natural n_0 such that
for all natural $n \geq n_0$, $12 \cdot n^2 + 9 \cdot n + 8 \leq c \cdot n^2$

$12 \cdot n^2 + 9 \cdot n + 8 \in O(n^2)$
$9.5 \cdot n^2 + 2.5 \cdot n + 4 \in O(n^2)$
$\frac{D}{2} \cdot n^2 + (C + \frac{D}{2}) \cdot n + B \in O(n^2)$

My algorithm takes time in $O(n^2)$
My algorithm takes $O(n^2)$ time
My algorithm takes time on the order of n^2

$4 \cdot n \cdot \log_2(n) + 2 \cdot n + 10 \in O(n \cdot \log_2(n))$

The definition is scary sophisticated because it has to drop some information and carefully preserve some other.
Using Limits to Prove Big-Oh

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) exists and is finite, then \(f(n) \in O(g(n)) \).
Using Limits to Prove Big-Oh

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) exists and is finite, then \(f(n) \in O(g(n)) \).

Prove: \(n \cdot (n + 1)/2 \in O(n^2) \)

\[
\lim_{n \to \infty} \frac{n \cdot (n + 1)/2}{n^2} = \frac{1}{2}
\]

Therefore \(n \cdot (n + 1)/2 \in O(n^2) \)

Prove: \(n \in O(n^2) \)

Prove: \(\ln(n) \in O(n) \)
Using Limits to Prove Big-Oh

Theorem: If $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ exists and is finite, then $f(n) \in O(g(n))$.

Prove: $n \cdot (n + 1)/2 \in O(n^2)$

$$\lim_{n \to \infty} \frac{n \cdot (n + 1)/2}{n^2} = \frac{1}{2}$$

Therefore $n \cdot (n + 1)/2 \in O(n^2)$

Prove: $n \in O(n^2)$

$$\lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} \frac{1}{n} = 0$$

Therefore $n \in O(n^2)$

Prove: $\ln(n) \in O(n)$
Using Limits to Prove Big-Oh

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) exists and is finite, then \(f(n) \in O(g(n)) \).

Prove: \(n \cdot (n + 1)/2 \in O(n^2) \)

\[
\lim_{n \to \infty} \frac{n \cdot (n + 1)/2}{n^2} = \frac{1}{2}
\]

Therefore \(n \cdot (n + 1)/2 \in O(n^2) \)

Prove: \(n \in O(n^2) \)

\[
\lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} \frac{1}{n} = 0
\]

Therefore \(n \in O(n^2) \)

Prove: \(\ln(n) \in O(n) \)

\[
\lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{n \to \infty} \frac{1/n}{1} = 0
\]

Therefore \(\ln(n) \in O(n) \)
Using Limits to Disprove Big-Oh

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then \(f(n) \not\in O(g(n)) \).
Using Limits to Disprove Big-Oh

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then \(f(n) \notin O(g(n)) \).

Disprove: \(n^2 \in O(n) \)

\[
\lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} n = \infty
\]

Therefore \(n^2 \notin O(n) \)

Disprove: \(n \in O(\ln(n)) \)
Using Limits to Disprove Big-Oh

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then \(f(n) \notin O(g(n)) \).

Disprove: \(n^2 \in O(n) \)

\[
\lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} n = \infty
\]

Therefore \(n^2 \notin O(n) \)

Disprove: \(n \in O(\ln(n)) \)

\[
\lim_{n \to \infty} \frac{n}{\ln(n)} = \lim_{n \to \infty} \frac{1}{1/n} = \infty
\]

Therefore \(n \notin O(\ln(n)) \)
When Limits Don’t Help

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) exists and is finite, then . . .

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then . . .

Which case has not been covered?
When Limits Don’t Help

Theorem: If $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ exists and is finite, then . . .

Theorem: If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$, then . . .

Which case has not been covered?

If $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ does not exist and is not ∞, then no conclusion.

Hopefully you won’t run into this case.
Examples When Limits Don’t Help

Define: \(\text{drunk}(n) = \) if \(n \) is even then 1 else \(n \)

(Plot it to see what it looks like!)

\[
\lim_{n \to \infty} \text{drunk}(n) \text{ does not exist and is not } \infty, \text{ and still } \text{drunk}(n) \in O(1).
\]
Examples When Limits Don’t Help

Define: $drunk(n) = \text{if } n \text{ is even then } 1 \text{ else } n$

(Plot it to see what it looks like!)

Example:

$$\lim_{n \to \infty} \frac{drunk(n)}{n}$$

does not exist and is not ∞, and still $drunk(n) \in O(n)$.

Example:

$$\lim_{n \to \infty} \frac{drunk(n)}{1}$$

does not exist and is not ∞, and this time $drunk(n) \notin O(1)$
About $n \in O(n^2)$

My friend says: “my algorithm takes $O(n^2)$ time.”

- It may take $9 \cdot n^2 + 4 \cdot n + 13$ time.

$O(n^2)$ includes quadratic functions as well as “lesser” functions. We need another definition to exclude “lesser” functions.

Draw inspiration from these:

$n^2 \in O(9 \cdot n^2 + 4 \cdot n + 13)$

$n^2 < O(3 \cdot n + 2)$

$n^2 < O(45)$
About $n \in O(n^2)$

My friend says: “my algorithm takes $O(n^2)$ time.”

- It may take $9 \cdot n^2 + 4 \cdot n + 13$ time.
- It may take $3 \cdot n + 2$ time.

 $3 \cdot n + 2 \in O(n^2)$ is still true.
About $n \in O(n^2)$

My friend says: “my algorithm takes $O(n^2)$ time.”

- It may take $9 \cdot n^2 + 4 \cdot n + 13$ time.
- It may take $3 \cdot n + 2$ time.

 $3 \cdot n + 2 \in O(n^2)$ is still true.
- It may take 45 time.

 $45 \in O(n^2)$ is still true.
About $n \in O(n^2)$

My friend says: “my algorithm takes $O(n^2)$ time.”

- It may take $9 \cdot n^2 + 4 \cdot n + 13$ time.
- It may take $3 \cdot n + 2$ time.
 $3 \cdot n + 2 \in O(n^2)$ is still true.
- It may take 45 time.
 $45 \in O(n^2)$ is still true.

$O(n^2)$ includes quadratic functions as well as “lesser” functions. We need another definition to exclude “lesser” functions.

Draw inspiration from these:

$n^2 \in O(9 \cdot n^2 + 4 \cdot n + 13)$
$n^2 \notin O(3 \cdot n + 2)$
$n^2 \notin O(45)$
Big-Theta, Θ

Definition: $f(n) \in \Theta(g(n))$ iff

$$f(n) \in O(g(n)) \text{ and } g(n) \in O(f(n))$$

Example: $9 \cdot n^2 + 4 \cdot n + 13 \in \Theta(n^2)$

Example: $n \notin \Theta(n^2)$
since $n^2 \notin O(n)$

Example: $\ln(n) \notin \Theta(n)$
since $n \notin O(\ln(n))$
Big-Theta, Θ

Definition: $f(n) \in \Theta(g(n))$ iff

$$f(n) \in O(g(n)) \text{ and } g(n) \in O(f(n))$$

Example: $9 \cdot n^2 + 4 \cdot n + 13 \in \Theta(n^2)$

Example: $n \not\in \Theta(n^2)$
since $n^2 \not\in O(n)$

Example: $\ln(n) \not\in \Theta(n)$
since $n \not\in O(\ln(n))$

My opinion: You should say Θ as much as you can.
Popular opinion: Just say O.

A good use of O: Assignment or contract says:
“Write a $O(n^2)$-time algorithm.”
It allows you to do better.
Big-Oh, Big-Theta May Miss Something

\[10^{100} \cdot n \in \Theta(n) \]
\[n + 10^{100} \in \Theta(n) \]

Can’t say these are practical algorithm times. But big-Oh, big-Theta can’t detect them. This is a price for ignoring machine differences.

These pathological cases are rare. Big-Oh, big-Theta are usually informative.
Big-Oh, Big-Theta Gain Simplification

e = false;
for (i = 0; i < n; i++) {
 for (j = i+1; j < n; j++) {
 if (a[i] == a[j]) { e = true; }
 }
}

“12 \cdot n^2 + 9 \cdot n + 8 \text{ ns}”
Took me 15 minutes to figure out.

“The inner loop takes $O(n - i - 1)$ time, which is $O(n)$. The outer loop takes n iterations. Altogether $O(n^2)$ time.”
This only takes 30 seconds to figure out.

It is one of the reasons we use big-Oh, big-Theta.
Worse Case, Best Case

```c
e = false;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; break; }
    }
    if (e) { break; }
}
```

Depending on what's in a: Anywhere from $\Theta(1)$ time to $\Theta(n^2)$ time.

Best case is $\Theta(1)$ time.

Worse case is $\Theta(n^2)$ time.

We look at worst cases in this course mostly.
Worse Case, Best Case

e = false;
for (i = 0; i < n; i++) {
 for (j = i+1; j < n; j++) {
 if (a[i] == a[j]) { e = true; break; }
 }
 if (e) { break; }
}

Depending on what’s in a:
Anywhere from $\Theta(1)$ time to $\Theta(n^2)$ time.

Best case is $\Theta(1)$ time.
Worse case is $\Theta(n^2)$ time.

We look at worst cases in this course mostly.
Myth Buster

Myth: Big-Oh means worst case time.

Truth: Big-Oh, big-Theta compare functions, do not say what the functions are for.

$9 \cdot n^2 + 4 \cdot n + 13$ may be best case time, or worst case time, or best case space, or worst case space, or just a polynomial from nowhere.

$9 \cdot n^2 + 4 \cdot n + 13 \in O(n^2)$ is true regardless.

“Best case time is in $O(n^2)$” is allowed.

Big-Oh, big-Theta are good for any function from natural to non-negative real.
public class Node<K extends Comparable<K>> {
 public K key;
 public Node<K> left, right;
 public Node(K x) { key = x; left = null; right = null; }
}

Why would you store data this way?
Storing a Set

I want to store a set of keys.

I’m given: keys can be compared (<, =, >).

I want these operations to be fast:

- `s.find(x)`: return whether x is in s
- `s.insert(x)`: add x to s
- `s.remove(x)`: delete x from s
Storing a Set: Near Miss

(Reminder: Keys can be compared (<, =, >).)

If I wanted this only:

- \(s.\text{find}(x): \text{return whether} \ x \ \text{is in} \ s \)

then you already know how to do it.
Storing a Set: Near Miss

(Reminder: Keys can be compared (<, =, >).)

If I wanted this only:

- \(s\text{.find}(x)\): return whether \(x\) is in \(s\)

then you already know how to do it.

Store in an array in increasing order:

\[
\begin{array}{cccccc}
8 & 13 & 20 & 42 & 47 & 85 & 91 \\
\end{array}
\]

Use binary search for \(\text{find}\). \(O(\log_2(n))\) time.
Storing a Set: Near Miss

(Reminder: Keys can be compared (<, =, >).)

If I wanted this only:

- \(s . \text{find}(x) \): return whether \(x \) is in \(s \)

then you already know how to do it.

Store in an array in increasing order:

\[
\begin{array}{cccccc}
8 & 13 & 20 & 42 & 47 & 85 & 91
\end{array}
\]

Use binary search for \text{find}. \(O(\log_2(n)) \) time.

But insert and remove are icky.
Storing a Set: Binary Search Tree

Good news for \texttt{s.find}(x):
left child, right child are exactly what you would try next in binary search!
Binary Search Tree: Definition

A binary search tree:

- is a binary tree
- at each node \(v \):
 - \(v \).key is greater than all keys in the left sub-tree
 - \(v \).key is smaller than all keys in the right sub-tree

The textbook ignores the empty tree. I include the empty tree.
Binary Search Tree: find

```java
private Node<K> root;
...

public boolean find(K x) {
    Node<K> v = root;
    while (v != null) {
        int r = v.key.compareTo(x);
        if (r == 0) {
            return true;
        } else {
            v = r > 0 ? v.left : v.right;
        }
    }
    return false;
}
```
public void insert(K x) {
if (root == null) {
 root = new Node<K>(x);
} else {
 Node<K> v = root;
 for (; ;) {
 if (v.key.compareTo(x) == 0) {
 return;
 } else if (v.key.compareTo(x) > 0) {
 if (v.left == null) {
 v.left = new Node<K>(x);
 return;
 } else {
 v = v.left;
 }
 } else {
 // similar, except it’s v.right
 }
 }
}
...
Binary Search Tree: insert trouble

Start with the empty tree.
Insert 1, 2, . . . , \(n \) in that order.
What do you get?
Binary Search Tree: insert trouble

Start with the empty tree.
Insert 1, 2, \ldots, n in that order.
What do you get?

The tree is leaned on one side.
find, insert, remove are not $O(\log_2(n))$ anymore.
What to do? What to do?

Cliff hanger! Come next time for a solution!