Motivation

Old storage organization:

```
CPU  RAM  disk slow
```

Modern storage organization:

```
CPU  cache  RAM slow
```

Data stored in the slow device. But read/write is per block.
Want to read/write fewer blocks.
Want to take full advantage of each block.
B-Trees, e.g., (2,4)-Trees

Say, B bytes can fit d child pointers and $d - 1$ keys.

Each (internal) node has c children and $c - 1$ keys, $\lceil d/2 \rceil \leq c \leq d$.

Keys are in increasing order: $k_1 < k_2 < \cdots < k_{c-1}$.

$k_{i-1} < \text{(keys in child subtree } T_i) < k_i$

All leaves (null, external nodes) are at the same depth.

(This example uses capital letters for keys, and $d = 4$.)
find(k)

Starting with the root:

Search for k in a node. If k is found, done.

If k is not found, you still know which “gap” it would be ⇒ which child to pursue.
insert(k, x)

Begin like **find**(k). Should be not-found, but you know which bottom node you end at.

Insert (k, x) there. Insert new leaf.

If overflow, split node and promote a middle key to the parent:

This may cause the parent node to overflow—repeat.

There may be no parent—create new root.
remove(k): part 1

Begin like find(k). Should be found.
If not bottom node: replace by an appropriate key in a bottom node.

E.g., replace k_i by 50.

Remove chosen key and a leaf at chosen bottom node.
If underflow and has parent...
remove(k): part 2a

Underflow case (a): an immediate sibling has 2 or 3 keys.

```
\[ \ldots, k_p, \ldots \]
\[ 20, 30 \]
\[ v'_1, v'_2, v'_3, v_1 \]
\[ \rightarrow \]
\[ \ldots, 30, \ldots \]
\[ 20 \]
\[ k_p \]
\[ v'_1, v'_2, v'_3, v_1 \]
```

"Transfer": steal from rich sibling, but go through parent.
remove(k): part 2b

Underflow case (b): otherwise (both siblings have too few keys).

```
  $k_1, k_2$
    /     \
   20     v_1
 /    \   /    \   /    \\
$v'_1$ $v'_2$ $v_1$

$\rightarrow$

  $k_1$
    /     \
   20, $k_2$ v_1
 /    \   /    \   /    \\
$v'_1$ $v'_2$ $v_1$
```

“Fusion”: steal a key from parent, merge with a sibling.

May cause parent to underflow—repeat fixing underflow.
B-Tree Height

n keys $\Rightarrow n + 1$ leaves. (Structural induction on subtrees.)

At most d children per node
$\Rightarrow n + 1 \leq d^{\text{height}}$
$\Rightarrow \log_d(n + 1) \leq \text{height}$

At least $d/2$ children per node, and all leaves have the same depth
$\Rightarrow n + 1 \geq (d/2)^{\text{height}}$
$\Rightarrow \log_{d/2}(n + 1) \geq \text{height}$
$\Rightarrow \log_d(n + 1)/(1 - \log_d(2)) \geq \text{height}$

$\text{height} \in \Theta(\log_d(n))$

If $d = B/r$, then $\log_d(n) = \log_B(n)/(1 - \log_B(r))$.

$\text{height} \in \Theta(\log_B(n)) = \Theta(\log_2(n)/(1 - \log_2(B))$

and the hidden constant factor is just slightly bigger than 1.
B-Tree Time Costs

find, insert, remove each reads/writes $\Theta(\log_B(n))$ nodes.

We choose d so that one node is in one block.

find, insert, remove each reads/writes $\Theta(\log_B(n))$ blocks.

This is better than binary search trees, which may read/write $\Theta(\log_2(n))$ blocks because different keys happen to scatter over different blocks.
Cache-Oblivious Data Structures

Block size B varies with computers.

In fact, even varies within the same computer:

In recent years, cache-oblivious data structures are invented to do well with caching, without knowing B.
Cache-Oblivious Lookahead Array: Basic

Basic version (no lookahead):

- Array i has length 2^i, either empty or full.
- If you have n keys, express n in binary.
- Array i is full iff bit i is on.
- Arrays are sorted (can do binary search).

Example: $n = 1011_2$
#0: 24
#1: 67, 81
#2:
#3: 13, 36, 48, 51, 57, 63, 72, 89
Insert

\(n = 1011_2 \)
\#0: 24
\#1: 67, 81
\#2:
\#3: 13, 36, 48, 51, 57, 63, 72, 89

Insert 75.

\(n = 1100_2 \)
\#0:
\#1:
\#2: 24, 67, 75, 81
\#3: 13, 36, 48, 51, 57, 63, 72, 89

Change in \(n \)'s binary form says which arrays to merge and where they go.
Amortized Time of Insert

We count the number of block accesses.

Over n inserts leading to n keys:

- Every time a merge merges s keys: $O(s/B)$ accesses per merge.
- Amortize that over those s keys: $O(1/B)$ accesses per key per merge.
- A key is involved in $O(\log_2(n))$ merges only.

Amortized $O(\log_2(n)/B)$ accesses per key (or per insert).

This is even better than B-trees’ $O(\log_2(n)/\log_2(B))$.
Find

Basic version (no lookahead): Find is not as rosy.

For each array, do a binary search.

$\Theta((\log_2(n))^2)$ in the worst case.

The real version adds redundant data to fix this.
Cache-Oblivious Lookahead Array

Real version (has lookahead):

In array \(#k \geq 2 \): Sacrifice half of its cells to:

- duplicate 1/8 of the content from array \(#k + 1 \), with pointers to where they are in \(#k + 1 \)
call these pointers “real lookahead pointers”
- every 4th cell is two pointers: to the duplicate on the left, to the duplicate on the right
call these pointers “duplicate lookahead pointers”
Find

With lookahead, examine at most 8 consecutive cells per array:

For the smaller arrays: obvious.

For the larger arrays: If not found in array $\#k$:

- a nearby duplicate lookahead pointer tells you a duplicate on the left and a duplicate on the right
- their real lookahead pointers bring you to a segment in $\#k + 1$
- only need to examine that segment
- the segment has only 8 cells

Find takes $O(\log_2(n))$ steps or block accesses.
One Last Thing

That is still not the real real version.

The real real version is more sophisticated to reduce worst-case cost of insert (from $O(n/B)$ to $O(\log_2(n))$).

There are other cache-oblivious data structures with different strengths and weaknesses. There are even a few versions of cache-oblivious B-trees.