Introduction

Today we begin studying how to calculate the total time of a sequence of operations as a whole. (As opposed to each operation individually.)

Why and when we care:
 - you have an algorithm that uses a certain data structure
 - some operation takes a long time, but not a problem because...
 - you just need the total time to be good

Introduction: Multi-Pop Stack Example

Multi-pop stack operations:
- push(x): implementation as usual, $\Theta(1)$ time
- pop(): implementation as usual, $\Theta(1)$ time
- multipop(i): calls pop() up to i times, $\Theta(i)$ worst case time (probably silly, but on purpose to show something)

Start from empty and perform m operations. What is the total time?

Multi-Pop Stack Cost (naïve)

Start from empty and perform m operations. What is the total time?
A naïve calculation may get a gross overestimate:
1. each operation may take $O(i)$ time
2. i may be near m because stack size may be near m
3. total: m operations take $O(m^2)$ time

You may see what's wrong with it:
 - either multipop happens too rarely to matter
 - or multipop happens so often, stack size stays small

How to calculate a better answer?

Multi-Pop Stack Cost (clever)

Starting from empty, perform m operations:
1. at most m pushes, m pops: total $\Theta(m)$
2. stack size is always at most m
3. all multipops together cannot pop more than m times: total $\Theta(m)$
4. total: m operations take $\Theta(m)$ time, worst case

You may be tempted to say:
 - each operation takes $\Theta(1)$ time in some sense

The next slide tells you the magic word for that!
Amortized Time

\(m\) operations take \(\Theta(m)\) total time, worst case.

Each operation takes \(\Theta(1)\) amortized time.

This name is inspired by obvious analogies with paying for mortgages etc.

Amortization Method #0: Aggregate

Aggregate method: like what I just did about multi-pop stacks.

1. at most \(m\) pushes, \(m\) pops: total \(\Theta(m)\)
2. stack size is always at most \(m\)
3. all multipops together cannot pop more than \(m\) times: total \(\Theta(m)\)
4. total: \(m\) operations take \(\Theta(m)\) time, worst case

In general: holistically calculate total worst-case time.

Not much of a method. Mainly ad-hoc arguments and tailor-making to each situation.

Amortization Method #1: Banker/Accounting

Banker/Accounting method:

Using multi-pop stacks again, imagine:

- each operation receives 2 bitcoins cyber-dollars
- push spends 1 cyber-dollar; pop does too
- multipop\(i\) spends \(\min(i, \text{size})\) cyber-dollars
- if surplus: save up for future spending
- if deficit: spend past savings

Prove: always have non-negative savings. (Next slide.)

Conclude: each operation takes \(O(2)\) amortized time (i.e., what it receives).

Banker/Accounting Method: Summary

Banker/Accounting method: Imagine:

- each operation receives some cyber-dollars
 this will become amortized time
- each operation spends some cyber-dollars
 this should equal worst-case time
- if surplus: save up for future spending
- if deficit: spend past savings

Prove: always have non-negative savings.

Suggestion: Imagine a way to distribute savings over data. This helps with deficit cases in the proof.

Amortization Method #2: Physicist/Potential

Physicist/Potential method:

Using multi-pop stacks again:

Choose "potential" \(\Phi_i =\) stack size after \(i\) operations.

Let \(a_i =\) operation \(i\)'s time + \(\Phi_i - \Phi_{i-1}\)

\[
\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} \text{operation } i\text{'s time} + \Phi_i - \Phi_{i-1}
\]

\[
= \text{total time} + \Phi_m - \Phi_0
\]

\[
\geq \text{total time}
\]

Can use \(a_i\) as amortized time (does not underestimate).

- push: amortized time = 2
- pop: amortized time = 0
- multipop\(i\): amortized time = 0
Physicist/Potential Method: Summary

Physicist/Potential method:

Choose “potential” $\Phi_i =$ a function of data structure state after i operations.

Prove: $\Phi_m \geq \Phi_0$.

Then amortized time = operation i’s time $+ \Phi_i - \Phi_{i-1}$.

One More Example: Binary Counter Increment

Put a k-bit number in an array C of k bits. LSB at $C[0]$. Initially all 0’s.

increment():

\begin{verbatim}
 i := 0
 while i < C.length & C[i]=1:
 C[i] := 0
 i := i + 1
 if i < C.length:
 C[i] := 1
\end{verbatim}

(For this example: modifying a bit takes $\Theta(1)$ time.)

Up to k bits could be already 1. Increment takes $\Theta(k)$ time worst case. What about a sequence of m increments?

Binary Increment: Aggregate Method

- $C[0]$ is modified m times
- $C[1]$ is modified $[m/2]$ times
- $C[2]$ is modified $[m/4]$ times
- $C[i]$ is modified $[m/2^i]$ times

Total number of modifications:

\[
\sum_{i=0}^{k-1} \left\lfloor \frac{m}{2^i} \right\rfloor \leq \sum_{i=0}^{\infty} \frac{m}{2^i} = 2m
\]

m increments take $O(m)$ total time. Amortized time $O(1)$.

Binary Increment: Accounting Method

Distribution of savings: attach 1 to each bit storing 1.

Base case: initially, 0 savings, no bit stores 1.

Induction step:

- If each bit storing 1 has 1 saved before increment:
 - increment receives 2
 - change some bits from 1 to 0: spend their attached dollars (does not use the received 2)
 - may change a bit from 0 to 1: spend 1, save 1

Then each bit storing 1 has 1 saved after increment.

Savings \geq how many bits store 1’s, non-negative. Amortized time $O(2)$, i.e., $O(1)$.

Binary Increment: Potential Method

Choose $\Phi_i =$ number of bits storing 1’s after i increments.

Check: $\Phi_m \geq \Phi_0$ because $\Phi_0 = 0$.

Can use ith increment’s time $+ \Phi_i - \Phi_{i-1}$ for amortized time.

Amortized time: at each increment:

- Say, t bits are changed from 1 to 0.
- In addition, may change 1 bit from 0 to 1.
- This takes time $\leq t + 1$.
- $\Phi_i \leq \Phi_{i-1} - t + 1$

Amortized time $\leq (t + 1) + (1 - t) = 2$.

Trailers

Tutorial: A more important example than today’s!

Next lecture: Amortized time of union-find!