Motivation

Old storage organization:

CPU → RAM → disk slow

Modern storage organization:

CPU → cache → RAM slow

Data stored in the slow device. But read/write is per block.
Want to read/write fewer blocks.
Want to take full advantage of each block.

B-Trees, e.g., (2,4)-Trees

Say, B bytes can fit d child pointers and $d - 1$ keys. Each (internal) node has c children and $c - 1$ keys, $[d/2] \leq c \leq d$.
Keys are in increasing order: $k_1 < k_2 < \cdots < k_{c-1}$.

$k_{c-1} < (\text{keys in child subtree } T_i) < k_i$

All leaves (null, external nodes) are at the same depth.
(This example uses capital letters for keys, and $d = 4$.)

\[\begin{array}{c}
H, P \\
B, C, E \\
J, L \\
S
\end{array} \]

\[\begin{array}{c}
k_1, k_2, k_3, k_4 \\
v_1, v_2, v_3, v_4, v_5
\end{array} \rightarrow \begin{array}{c}
k_1 \\
v_1, v_2, v_3, v_4, v_5
\end{array} \]

\[\begin{array}{c}
k_1, k_2, k_3, k_4 \\
v_1, v_2, v_3, v_4, v_5
\end{array} \rightarrow \begin{array}{c}
k_1, k_2 \\
v_1, v_2, v_3, v_4, v_5
\end{array} \]

This may cause the parent node to overflow—repeat.
There may be no parent—create new root.

\[\begin{array}{c}
\ldots, k_p, \ldots \\
v_1', v_2', v_3', v_1
\end{array} \rightarrow \begin{array}{c}
\ldots, 30, \ldots \\
v_1', v_2', v_3', v_1
\end{array} \]

“Transfer”: steal from rich sibling, but go through parent.

find(k)

Starting with the root:
Search for k in a node. If k is found, done.
If k is not found, you still know which “gap” it would be ⇒ which child to pursue.

insert(k, x)

Begin like find(k). Should be not-found, but you know which bottom node you end at.
Insert (k, x) there. Insert new leaf.
If overflow, split node and promote a middle key to the parent:

\[\begin{array}{c}
k_1, k_2, k_3, k_4 \\
v_1, v_2, v_3, v_4, v_5
\end{array} \rightarrow \begin{array}{c}
k_1 \\
v_1, v_2, v_3, v_4, v_5
\end{array} \]

This may cause the parent node to overflow—repeat.
There may be no parent—create new root.

remove(k): part 1

Begin like find(k). Should be found.
If not bottom node: replace by an appropriate key in a bottom node.

\[\begin{array}{c}
\ldots, k_1, \ldots \\
v_i \\
40, 50
\end{array} \rightarrow \begin{array}{c}
\ldots, k_1, \ldots \\
v_i
\end{array} \]

E.g., replace k_1 by 50.
Remove chosen key and a leaf at chosen bottom node.
If underflow and has parent…

remove(k): part 2a

Underflow case (a): an immediate sibling has 2 or 3 keys.

\[\begin{array}{c}
\ldots, k_p, \ldots \\
20, 30 \\
v_1', v_2', v_3', v_1
\end{array} \rightarrow \begin{array}{c}
\ldots, 30, \ldots \\
20
\end{array} \]

“Transfer”: steal from rich sibling, but go through parent.
remove(k): part 2b

Underflow case (b): otherwise (both siblings have too few keys).

```
          k1, k2
         /   \
        20   
   v'_1  v'_2  v_1   \rightarrow  
          k1  20, k2
              /   \
         v'_1  v'_2  v_1
```

"Fusion": steal a key from parent, merge with a sibling.
May cause parent to underflow—repeat fixing underflow.

B-Tree Height

n keys \Rightarrow $n + 1$ leaves. (Structural induction on subtrees.)

At most d children per node
$\Rightarrow n + 1 \leq d^{\text{height}}$
$\Rightarrow \log_d(n + 1) \leq \text{height}$

At least $d/2$ children per node, and all leaves have the same depth
$\Rightarrow n + 1 \geq (d/2)^{\text{height}}$
$\Rightarrow \log_{d/2}(n + 1) \geq \text{height}$
$\Rightarrow \log_d(n + 1)/(1 - \log_d(2)) \geq \text{height}$

$\text{height} \in \Theta(\log_d(n))$
If $d = B/r$, then $\log_d(n) = \log_B(n)/(1 - \log_B(r))$.
$\text{height} \in \Theta(\log_B(n)) = \Theta(\log_2(n)/\log_2(B))$
and the hidden constant factor is just slightly bigger than 1.

B-Tree Time Costs

find, insert, remove each reads/writes $\Theta(\log_B(n))$ nodes.

We choose d so that one node is in one block.
find, insert, remove each reads/writes $\Theta(\log_B(n))$ blocks.

This is better than binary search trees, which may read/write $\Theta(\log_2(n))$ blocks because different keys happen to scatter over different blocks.

Cache-Oblivious Data Structures

Block size B varies with computers.
In fact, even varies within the same computer:

```
CPU -- cache  RAM
    
```

In recent years, cache-oblivious data structures are invented to do well with caching, without knowing B.

Cache-Oblivious Lookahead Array: Basic

Basic version (no lookahead):

- Array $#i$ has length 2^i, either empty or full.
- If you have n keys, express n in binary.
- Array $#i$ is full iff bit $#i$ is on.
- Arrays are sorted (can do binary search).

Example: $n = 1011_2$

#0: 24
#1: 67, 81
#2:
#3: 13, 36, 48, 51, 57, 63, 72, 89

Insert

$n = 1011_2$

#0: 24
#1: 67, 81
#2: 75
#3: 13, 36, 48, 51, 57, 63, 72, 89

Insert 75.

$n = 1100_2$

#0:
#1:
#2: 24, 67, 75, 81
#3: 13, 36, 48, 51, 57, 63, 72, 89

Change in n’s binary form says which arrays to merge and where they go.
Amortized Time of Insert

We count the number of block accesses.

Over \(n \) inserts leading to \(n \) keys:

- Every time a merge merges \(s \) keys: \(O(s/B) \) accesses per merge.
- Amortize that over those \(s \) keys: \(O(1/B) \) accesses per key per merge.
- A key is involved in \(O(\log_2(n)) \) merges only.

Amortized \(O(\log_2(n)/B) \) accesses per key (or per insert).

This is even better than B-trees' \(O(\log_2(n)/\log_2(B)) \).

Find

Basic version (no lookahead): Find is not as rosy.

For each array, do a binary search.

\(\Theta((\log_2(n))^2) \) in the worst case.

The real version adds redundant data to fix this.

Cache-Oblivious Lookahead Array

Real version (has lookahead):

In array \(k \geq 2 \): Sacrifice half of its cells to:

- duplicate 1/8 of the content from array \(k+1 \), with pointers to where they are in \(k+1 \).
 call these pointers "real lookahead pointers"
- every 4th cell is two pointers: to the duplicate on the left, to the duplicate on the right
 call these pointers "duplicate lookahead pointers"

Find

With lookahead, examine at most 8 consecutive cells per array:

For the smaller arrays: obvious.

For the larger arrays: If not found in array \(k \):

- a nearby duplicate lookahead pointer tells you a duplicate on the left and a duplicate on the right
- their real lookahead pointers bring you to a segment in \(k+1 \)
- only need to examine that segment
- the segment has only 8 cells

Find takes \(O(\log_2(n)) \) steps or block accesses.

One Last Thing

That is still not the real real version.

The real real version is more sophisticated to reduce worst-case cost of insert (from \(O(n/B) \) to \(O(\log_2(n)) \)).

There are other cache-oblivious data structures with different strengths and weaknesses. There are even a few versions of cache-oblivious B-trees.