This Course Is About... (1/2)

Data structures: how to store data.
Examples: arrays, linked lists.
This course goes way beyond them.
But why? Why other data structures?
Because you need this course to graduate. :)
To speed up some kinds of lookups and updates.

This Course Is About... (2/2)

We will learn:

- Several data structures.
- Algorithms that look up and update them.
- Why the algorithms are correct.
- How fast the algorithms are.
 (Therefore what the data structures are good for.)
 Sometimes also how much space.
- Making up our own data structures and algorithms.
 (Or adapting from what we learned.)

The course cannot possibly cover all data structures!
There are a lot more you will have to learn outside this course.

Course Web Page

And Blackboard.

We now turn to stuff that will be on the exam!
Big O

“Linear search takes $O(n)$ time.”

“Binary search takes $O(\lg(n))$ time.” (\lg means \log_2)

“Bubble sort takes $O(n^2)$ time.”

$n^2 + 2n + 1 \in O(n^2)$

$n^2 + 2n + 1 \not\in O(n)$

??? What are they saying?

Let me scare you a bit first…

(Assume: for all natural n, $f(n) \geq 0$, $g(n) \geq 0$.)

(In this course, 0 is a natural number.)

Definition: $f(n) \in O(g(n))$ iff

there exists real $c > 0$, natural n_0 such that

for all natural $n \geq n_0$,

\[f(n) \leq c \times g(n) \]

Help! What is it saying?!

Let me tell some revisionist history…

How much time does this take?

```plaintext
e = false;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; }
    }
}
```

On one computer and one compiler:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>read i, j, n</td>
<td>2 ns</td>
</tr>
<tr>
<td>read a[i]</td>
<td>3 ns</td>
</tr>
<tr>
<td>write i, j</td>
<td>3 ns</td>
</tr>
<tr>
<td>arithmetic</td>
<td>1 ns</td>
</tr>
<tr>
<td>two-way branch</td>
<td>1 ns if continue, 2 ns if exit</td>
</tr>
<tr>
<td>loop back</td>
<td>1 ns</td>
</tr>
</tbody>
</table>

Total: $12n^2 + 9n + 8$

How much time does this take?

```plaintext
e = false;
for (i = 0; i < n; i++) {
    for (j = i+1; j < n; j++) {
        if (a[i] == a[j]) { e = true; }
    }
}
```

On another computer and another compiler:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>read i, j, n</td>
<td>1 ns</td>
</tr>
<tr>
<td>read a[i]</td>
<td>5 ns</td>
</tr>
<tr>
<td>write i, j</td>
<td>1 ns</td>
</tr>
<tr>
<td>arithmetic</td>
<td>1 ns</td>
</tr>
<tr>
<td>two-way branch</td>
<td>0 ns if continue, 2 ns if exit</td>
</tr>
<tr>
<td>loop back</td>
<td>1 ns</td>
</tr>
</tbody>
</table>

Total: $9.5n^2 + 2.5n + 4$
How much time does this take?

e = false;
for (i = 0; i < n; i++) {
 for (j = i+1; j < n; j++) {
 if (a[i] == a[j]) { e = true; }
 }
}

To a theoretician:

<table>
<thead>
<tr>
<th>j-loop</th>
<th>D(n - i - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-loop</td>
<td>(\sum_{j=0}^{n-1} (C + \text{j-loop}))</td>
</tr>
<tr>
<td>whole</td>
<td>(B + \text{i-loop})</td>
</tr>
</tbody>
</table>

Total: \(\frac{D}{2} n^2 + (C + \frac{D}{2})n + B\)

How to be both Coarse and Rigorous?

Watch this mathemagic:

\[
12n^2 + 9n + 8 \leq 12n^2 + 9n^2 + 8 = 21n^2 + 8
\]

For all natural \(n \geq 8\):

\[
21n^2 + 8 \leq 21n^2 + n \\
\leq 21n^2 + n^2 \\
= 22n^2
\]

There exists natural \(n_0\) such that
for all natural \(n \geq n_0\), \(12n^2 + 9n + 8 \leq 22n^2\)

How to be both Coarse and Rigorous?

There exists real \(c > 0\), natural \(n_0\) such that
for all natural \(n \geq n_0\), \(12n^2 + 9n + 8 \leq cn^2\)

\[
12n^2 + 9n + 8 \in O(n^2) \\
9.5n^2 + 2.5n + 4 \in O(n^2) \\
\frac{D}{2} n^2 + (C + \frac{D}{2})n + B \in O(n^2)
\]

My algorithm takes time in \(O(n^2)\)
My algorithm takes \(O(n^2)\) time
My algorithm takes time on the order of \(n^2\)

\[
4n \log_2(n) + 2n + 10 \in O(n \log_2(n))
\]

The definition is scary sophisticated because it has to drop some information and carefully preserve some other.
More or Less

But wait, these are also true:

▶ \(n \in O(n^2) \)
▶ \(3 \in O(n^2) \)

\(O(n^2) \) includes quadratic functions as well as “lesser” functions. We need another definition to exclude “lesser” functions.

\(n \in O(n^2) \) because it only requires there exists . . . for all . . . \(n \leq cn^2 \)
It’s only a one-sided inequality.

The definition in the next slide uses a two-sided inequality to rule out this.

The Rise of Big \(\Theta \)

(Assume: for all natural \(n, f(n) \geq 0, g(n) \geq 0. \))

Definition: \(f(n) \in \Theta(g(n)) \) iff

there exists real \(b > 0 \), real \(c > 0 \), natural \(n_0 \) such that for all natural \(n \geq n_0 \),
\(b \times g(n) \leq f(n) \leq c \times g(n) \)

\(\Theta \) is Greek capital theta.

Example: \(12n^2 + 9n + 8 \in \Theta(n^2) \) because for all \(n \geq 8, 1n^2 \leq 12n^2 + 9n + 8 \leq 22n^2 \)
Example: \(n \notin \Theta(n^2) \) because (sketch) you can’t make \(bn^2 \leq n \) to work.

Using Limits to Prove Big \(O \)

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) exists and is finite, then \(f(n) \in O(g(n)) \).

Example: Prove \(n(n+1)/2 \in O(n^2) \)

\[
\lim_{n \to \infty} \frac{n(n+1)/2}{n^2} = \frac{1}{2}
\]

Therefore \(n(n+1)/2 \in O(n^2) \)

Example: Prove \(\ln(n) \in O(n) \)

\[
\lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{n \to \infty} \frac{1/n}{1} = 0
\]

Therefore \(\ln(n) \in O(n) \)

Using Limits to Disprove Big \(O \)

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then \(f(n) \notin O(g(n)) \).

Example: Disprove \(n^2 \in O(n) \)

\[
\lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} n = \infty
\]

Therefore \(n^2 \notin O(n) \)

Example: Disprove \(n \in O(\ln(n)) \)

\[
\lim_{n \to \infty} \frac{n}{\ln(n)} = \lim_{n \to \infty} \frac{1}{1/n} = \lim_{n \to \infty} n = \infty
\]

Therefore \(n \notin O(\ln(n)) \)
When Limits Don’t Help

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) exists and is finite, then . . .

Theorem: If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then . . .

Which case has not been covered?

If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) does not exist and is not \(\infty \), then no conclusion.

Hopefully you won’t run into this case.

Examples When Limits Don’t Help

Define: \(\text{drunk}(n) = \) if \(n \) is even then 1 else \(n \)

(Plot it to see what it looks like!)

Example:

\[\lim_{n \to \infty} \frac{\text{drunk}(n)}{n} \]

does not exist and is not \(\infty \), and still \(\text{drunk}(n) \in O(n) \).

Example:

\[\lim_{n \to \infty} \frac{\text{drunk}(n)}{1} \]

does not exist and is not \(\infty \), and this time \(\text{drunk}(n) \notin O(1) \)

Using Limits for \(\Theta \)

Theorem: \(f(n) \in \Theta(g(n)) \) iff

\(f(n) \in O(g(n)) \) and \(g(n) \in O(f(n)) \)

Handy when you want to use limits.
(Not handy when you want to prove the \(\exists \forall \) directly.)

Example: \(n^2 + n^{3/2} \in \Theta(n^2) \)

\(n^2 + n^{3/2} \in O(n^2) \) by a limit

\(n^2 \in O(n^2 + n^{3/2}) \) by a similar limit

Example: \(\ln(n) \notin \Theta(n) \)

You saw \(n \notin O(\ln(n)) \) by a limit.

Big \(O \), Big \(\Theta \) May Miss Something

\(10^{100}n \in \Theta(n) \)

\(n + 10^{100} \in \Theta(n) \)

Can’t say these are practical algorithm times.
But \(O \), \(\Theta \) can’t detect them.
This is a price for ignoring machine differences.

These pathological cases are rare. \(O \) and \(\Theta \) are usually informative.
Big O, Big Θ Gain Simplification

```java
public void example() {
    e = false;
    for (i = 0; i < n; i++) {
        for (j = i+1; j < n; j++) {
            if (a[i] == a[j]) { e = true; break; }
        }
    }
    if (e) { break; }
}
```

“$12n^2 + 9n + 8$ ns”
Took me 15 minutes to figure out.

“The inner loop takes $O(n - i - 1)$ time, which is $O(n)$.
The outer loop takes n iterations.
Overall $O(n^2)$ time.”
This only takes 30 seconds to figure out.

It is one of the reasons we use O and Θ.

O vs Θ

My friend says: “my algorithm takes $O(n^2)$ time.”

- It may mean $9n^2 + 4n + 13$
- It may mean $3n + 2$ time.
 $3n + 2 \in O(n^2)$ is still true.
- It may take 45 time.
 $45 \in O(n^2)$ is still true.

My opinion: You should say Θ as much as you can.

Popular opinion: Just say O.

A good use of O: Assignment or contract says:
“Write a $O(n^2)$-time algorithm.”
It allows you to do better.

Worse Case, Best Case

```java
public void example() {
    e = false;
    for (i = 0; i < n; i++) {
        for (j = i+1; j < n; j++) {
            if (a[i] == a[j]) { e = true; break; }
        }
    }
    if (e) { break; }
}
```

Depending on what’s in a:
Anywhere from $\Theta(1)$ time to $\Theta(n^2)$ time.

Best case is $\Theta(1)$ time.
Worse case is $\Theta(n^2)$ time.

We look at worst cases in this course mostly.

Myth Buster

Myth: O means worst case time.

Truth: O and Θ classify functions, do not say what the functions are for.

$9n^2 + 4n + 13$ may be best case time, or worst case time, or best case space, or worst case space, or just a polynomial from nowhere.

$9n^2 + 4n + 13 \in O(n^2)$ is true regardless.

“Best case time is in $O(n^2)$” is allowed. It means:
Best case time is some function, that function is in $O(n^2)$.
Clearly a sensible statement and possible scenario.

O and Θ are good for any function from natural to non-negative real.
Binary Search Tree: Introduction

```java
public class Node<K extends Comparable<K>> {
    public K key;
    public Node<K> left, right;
}
```

Why would you store data this way?

Storing a Set

I want to store a set of keys.

I'm given: keys can be compared (<, =, >).

I want these operations to be fast:

- `s.find(x)`: return whether `x` is in `s`
- `s.insert(x)`: add `x` to `s`
- `s.remove(x)`: delete `x` from `s`

Storing a Set: Near Miss

(Reminder: Keys can be compared (<, =, >).)

If I wanted this only:

- `s.find(x)`: return whether `x` is in `s`

then you already know how to do it.

Store in an array in increasing order:

```
8 13 20 42 47 85 91
```

Use binary search for `find`. $O(\log_2(n))$ time.

But `insert` and `remove` are icky.

Storing a Set: Binary Search Tree

```
8 13 20 42 47 85 91
```

Good news for `s.find(x)`:
left child, right child are exactly what you would try next in binary search!
Binary Search Tree: Definition

A binary search tree:

- is a binary tree
- at each node v:
 - v.key is greater than all keys in the left sub-tree
 - v.key is smaller than all keys in the right sub-tree

Binary Search Tree: find

```java
private Node<K> root;
...
public boolean find(K x) {
    Node<K> v = root;
    while (v != null) {
        int r = v.key.compareTo(x);
        if (r == 0) {
            return true;
        } else {
            v = r > 0 ? v.left : v.right;
        }
    }
    return false;
}
```

Binary Search Tree: insert

```java
public void insert(K x) {
    if (root == null) {
        root = new Node<K>(x);
    } else {
        Node<K> v = root;
        for (; ;) {
            if (v.key.compareTo(x) == 0) {
                return;
            } else if (v.key.compareTo(x) > 0) {
                if (v.left == null) {
                    v.left = new Node<K>(x);
                    return;
                } else {
                    v = v.left;
                }
            } else {
                // similar, except it's v.right
            }
        }
    }
}

Binary Search Tree: insert trouble

Start with the empty tree.
Insert 1, 2, ..., n in that order.
What do you get?

The tree is leaned on one side.
find, insert, remove are not $O(\log_2(n))$ anymore.
What to do? What to do?

Cliff hanger! Come next time for a solution!